
Proceedings of the Operational Research Society Simulation Workshop 2010 (SW10)

103

SIMULATION OPTIMISATION USING SIMKIT

Serdar Bozoglan
Murat M. Günal

Institute of Naval Science and Engineering
Turkish Naval Academy
Tuzla, Istanbul, Turkey.

zserdarb@hotmail.com , mgunal@dho.edu.tr

ABSTRACT
In this paper, we present early findings of an
ongoing research which investigates the use of an
open source simulation library, Simkit, to develop
and implement simulation optimisation
algorithms. Simulation based optimization is an
available feature in most COTS simulation
software. However, in these software different
search strategies are adopted, which does not
allow users to compare performance of
optimization algorithms. In our tool, we allow
users to choose one of the available heuristics, as
well as to do complete enumeration, if it is
feasible, to search for the optimum response. We
used a well-known problem as a test-bed for our
tool.

Key Words: Simulation Optimization ,
Metamodel, SIMKIT, Java.

1. INTRODUCTION

Simulation and optimization have been thought
together for many years. Whilst optimisation
techniques are used to search for the best by
mathematically programming a problem,
simulation is used to understand complex systems
by modelling. Optimisation techniques are known
with their speed, and simulation is known with its
flexibility and its capability to handle the
complexity. Coupling these two operations
research techniques emerged a new research area
(Law (2000) and Fu (2002)), which also affected
the practice. Nowadays almost all commercial
discrete-event simulation software have an
optimization module.

The main idea of simulation optimisation (SO) is
to use the two techniques, optimisation and
simulation, inline. That is the output of a
simulation model feeds an optimisation model,
and later new solutions are fed to the simulation.
New solutions are obtained from initial solution
and this new obtained solutions are used as input
parameters so this iterative approach goes on
until achieving a stopping rule. Simulation model
can be thought as a black-box method in the
metaheuristic optimisation model. Figure-1
shows this approach. The metaheuristic optimiser
uses a set of values, that is the output of a

simulation model, and these values are evaluated
in the optimiser to suggest better solutions. The
optimiser does not find an optimum at once, but
rather searches the solution space.

We adopted the general approach in Figure 1 and
aimed at developing an optimiser module which
can be plugged to a simulation model. The
module is only capable of problems where
decision variables are integers and a feasible
solution can be represented as a vector of
integers. In our optimisation module, we will
include three heuristic algorithms, genetic, tabu
search, and simulated annealing. To get a general
view of solution space we also allow users to run
experiments with partial or complete enumeration
of solution space.

Figure 1 Black-box approach to optimization via
simulation

On the simulation model side, we used SIMKIT
as our modelling software. Simkit is an event-
driven open-source Java package developed by
Buss (2002). Using Simkit, the modeller focuses
on events that causes state changes in a system.
The modeller writes a method for each of the
events in system. Simkit is particularly powerful
in combat modelling.

In the next section a brief review of the literature
is given. Simkit and the optimisation module are
explained in more detail in section 3. In section 4,
an example which demonstrates the use of the
module with Simkit is presented.

In this research, we aimed at investigating the
benefits of having multiple heuristics algorithms
in a simulation optimization package. The users
of this package can compare different algorithms

OutputsInputs
Simulation

Model

Optimiser



Proceedings of the Operational Research Society Simulation Workshop 2010 (SW10)

104

to solve optimization problems, and therefore can
evaluate which algorithm suits to the problem on
hand. As best of our knowledge, the simulation
software in the market, and in the academia, use
one optimisation algorithm and does not allow
users to try multiple algorithms. We aimed at
filling this gap in the literature and contribute to
the discussion.

2. SIMULATION OPTIMISATION: A
REVIEW

The literature in this area is rich and it is not
surprising that there are already reviews and
classifications of the studies conducted.
Sabuncuoglu and Tekin (2004) is one of such
reviews where the methods and approaches in SO
are classified and examined in detail. Our
intention here is not to give a complete re-review
of the literature, but to let the readers refresh their
knowledge.

As in a classical optimisation problem, there are
one or more objective functions and some
constraints in a simulation-based optimization
problem. The objective function consists of
decision variables, which are input parameters of
a simulation model. These input parameters are
known as “factors” and they are transformed to
output performance measures called “responses”.
Structural assumptions can also be seen as factors
in a simulation model. Factors can be classified
as qualitative or quantitative; Quantitative factors
have numerical values like number of machines
in a system or reorder point in an inventory
system. Whereas qualitative factors contains
structural assumptions like queue priority or
routing policy in a system. In addition to this
classification, it is possible to categorize factors
as controllable or uncontrollable (Law, 2004).

Experimental design used in SO aims at
discovering which factors have the most effective
influence on the response and finding the right
combination of factors which maximizes or
minimizes the response (Law, 2004). It is
important to narrow down the search space, by
smartly designing the experiments, since each
experiment requires computing time. More
experiments mean more model run and more
time. The efficiency is therefore crucial in SO.
Lou et al (2000) grouped the efforts to increase
the efficiency into three; modelling, analysis, and
execution.

As mentioned earlier there are many methods and
techniques in SO which are available in
modellers’ toolkit. We simply name some of
these methods here. If the optimization problem

has a single objective function then the methods
listed below are most commonly used;

 Gradient Based Search Methods

 Stochastic Approximation Methods

 Sample Path Optimization

 Response Surface Methods

 Heuristic Search Methods

In the case of multi-criteria optimization, special
methods such as the ones listed below are used;

 Variation of Goal Programming

 Multi-Attribute Value Function Method

 Using one of the responses as the primary
responses that depend on the achievement of
other objective functions.

Our general review also includes pros and cons in
SO. The advantages of simulation in optimization
can be grouped under three headings (Azadivar,
1999):

 Complexity: Modelling complex systems
for solving problems is easer in simulation than in
optimization. Simulation is known as a technique
with its capability of handling the complexity in
systems. However it is difficult to integrate
detailed features of systems in optimization
problems.

 Stochasticity: Factors generally have
stochastic nature. In case of stochastic systems,
the variance of the response can be controlled by
using some output analysis techniques. Whereas
in optimisation it is hard to include stochastic
elements in a system.

 Flexibility: Simulation is also known with
its flexibility to address different situations. It is
easy to model real life problems. This feature of
simulation is also applicable in SO.

Although there are advantages of using
simulation for optimisation problems, it brings
some issues. For instance, in addition to
stochastic nature of factors, complex and highly
non-linear optimization problems can be too
complex for simulation analysis. The
disadvantages of using simulation for
optimisation are:

 There is no any analytical expression of
the objective functions or the constraints. In this
case it is not likely to differentiate or exact
calculate the local gradients.

 Computer simulation runs take much more
time than evaluating analytical functions. So
efficiency of the optimization algorithm becomes
vital.

 Optimization and simulation use different
computer languages so analyst may have a
challenge with that.



Proceedings of the Operational Research Society Simulation Workshop 2010 (SW10)

105

3. SIMKIT AND THE OPTIMASATION
MODULE
Simkit is a discrete event simulation library
written in Java (Buss, 2002) which implements
event scheduling paradigm. The modeller can
create a model of an event graph using Simkit.
An event graph has two basic elements; events
(nodes) and scheduling edges (edges). It works as
follows: when an event occurs, after a delay and
if a condition is met, another event is scheduled.
The conversion between an event graph and
Simkit model is simple. The modeller writes a
method for each event and inside this method
next event is scheduled. Then the simulation
executive runs the event list.

Figure 2 Pseudo code for SO module.

The pseudo code given in figure 2 is the
implementation of the simple representation in
Figure 1; that is running the model with the input
values suggested by the optimiser, based on the
response values produced by the model. Since
there are stochastic elements, we need to run a
model multiple times and collect statistics to
estimate mean response values (the inner loop).
The outer loop manages the search for the
optimum. It can be a complete search in the
search space or a heuristic search. The decision of
stopping the search depends on the search
algorithm. It can depend on number of iterations,
real time or near value. In the worst case it can be
complete enumeration.

Figure 3 The link between optimisation module
and a model.

The Simkit model and the optimisation module
are separated from each other. They communicate
via an execution class which only keeps a main
method. The optimisation module, on the other
hand, evaluates response values received from the
execution class and generates new solutions
which then transfer to the model. A solution
means a new input set of values. This separation
allows the optimisation module to be runnable in
different modelling software.

4. A SIMPLE MODEL AS A TEST BED FOR
PARTIAL ENUMARATION

4.1. Introducing the problem
To test our methodology, we chose a simple
simulation optimisation problem from the
literature. Law and McComas (2000) have first
introduced this problem which, later, is included
in Law (2007, p.663). In this problem, there are
four serially connected workstations and in each
workstation there is finite number of machines.
The number of machines in each workstation is
one of the two decision variables. Machines
process blank parts and pass the parts to the
buffers, which have finite capacities, between
completed workstation and the next workstation.
Hence there are three buffers. The buffer
capacities between workstations are the other
decision variables. In this example it is assumed
that there is infinite supply of blank parts and the
first workstation can never be idle. However, one
complication is that workstations can be blocked
when all of the buffer slots of the completed
workstation are full, in which case the
workstation cease processing.

In this optimisation problem, the constraints are
related to the number of machines in each
workstation, which can be up to 3, and the
number of buffer slots, which can be up to 10.
The later is associated with the space capacity.
The objective is to maximize the profit which is
given as a function of throughput (number of
parts produced), number of machines, and
number of buffer slots.

4.2. The Simkit Model
The starting point to develop a model using
Simkit is to draw an event graph of the system to
be modelled. Note that this is also one way of
representing a conceptual model of a system. The
Simkit model includes arrival of parts events,
start and end of machine events. Number of
machines and number of buffers are countable
resources. Arrival process in this particular
problem is tricky since an arrival to a machine
occurs if the machine is idle and if the succeeding
buffer is free.

While optimisation not finished

Create one solution

For ReplicationNum=1 to NumRuns

Stop at (Run Length)

Reset variables

Run Simulation

Collect one Run Stats.

Collect one Experiment Stats.

Record the response of one solution

Execution Class

Optimisation

Module

Simkit

Model



Proceedings of the Operational Research Society Simulation Workshop 2010 (SW10)

106

4.3. Experimentation
In this type of problems, where decision variables
can have discrete values, enumeration is feasible.
Initial values can be assigned to decision
variables and in each iteration of the outer loop in
fig. 2, values can be incremented or decremented
within the constraints of these variables. If every
possible value is tried then a complete
enumeration is achieved. This will ensure that
each solution in the solution space is searched
and an objective function value is calculated for
every possible solution. Although this approach
sounds logically good, it may not be practically
appropriate since the number of solutions in the
solution space can be too many and hence
complete enumeration can take too much
computing time. For this reason optimisation
techniques look at smarter ways of searching by
restricting the search space and by directing the
search to the areas where the optimum is more
likely to be.

Number of solutions in the solution space is a
function of the number of decision variables and
their ranges. The range for a decision variable is
meant to be the constraints in an optimisation
problem. For example in our problem we
restricted the number of machines and the buffer
sizes. These limitations significantly restrict the
search space. Four workstations and up to three
machines in each mean that we have 34

alternative configurations, and likewise, three
buffers and up to 10 slots in each mean that we
have 103 alternative configurations. In total we

end-up with 81,000 combinations of seven
decision variables.

We experimented with Simkit model for 10,000
solutions which were chosen randomly. As
discussed before complete enumeration is
possible but not practical. Our partial
enumeration means that almost 1/8 of the whole
space is scanned. Results of this experimentation
are shown in fig. 4.

4.4. Performance
We conducted our experiments on a laptop with 2
Gb Ram and 2.2 Ghz, Intel Core 2 Duo processor.
We examined a number of cases where number of
solutions is changed. In these experiments we run
the model 5 times.

As seen in table 1, the model performance is
directly correlated, in fact linearly, with the
number of solutions examined. 10000 solutions
take 5400 seconds to complete.

Table 1 Model performance in different number
of solutions.

Number of
solutions Time

1 0.6
10 5.5

100 53.0
1000 520.0

10000 5400.0

Figure 4 Output of 10000 runs.

0

100000

200000

300000

400000

500000

600000

700000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

S olutions



Proceedings of the Operational Research Society Simulation Workshop 2010 (SW10)

107

5. FUTURE RESEARCH

In this paper, we briefly reviewed the techniques
for simulation optimization and presented
preliminary outcomes of our study.

In the design of our package, we foresee adding
some well-known heuristic algorithms, such as
Genetic Algorithm (GA), Tabu Search (TS), and
Simulated Annealing (SA). We aim to have a
heuristic optimisation package which can be
plugged to a simulation model. Although the
problem types that this package can be used for is
limited (integer decision variables) it is believed
to be useful for comparing heuristic algorithms in
simulation optimisation problems.

ACKNOWLEDGEMENTS
This paper is written as part of the first author’s
master’s thesis study.

REFERENCES

April Jay, Glover Fred, Kelly P.James, Laguna
Manuel (2010), The Exploding Domain of
Simulation Optmization, www.opttek.com [as
accessed on Jan.2010]

Azdivar Farhad (1999), Simulation Optimization
Methodologies, Optimization, Proceedings of
the 1999 Winter Simulation Conference

Buss, A.(2002), "Component based simulation
modeling with Simkit," Simulation Conference,
2002. Proceedings of the Winter , vol.1, no.,
pp. 243-249 vol.1, 8-11 Dec. 2002.

Deng Geng (2007), Simulation-Based
Optimization, PhD thesis, University of
Wisconsin- Madison

Fu Michael (2002), Optimization for Simulation
Theory vs. Practice, INFORMS Journal on
Computing/Vol. 14, No. 3, Summer 2002

Law Avreill, McComas G. Michael (2000),
Simulation-Based Optimization, Proceedings of
the 2000 Winter Simulation Conference

Law A.M. (2007), Simulation Modeling and
Analysis, Fourth Edition Publisher: Location

Lou Yuh-Chuyn, Chen Chun-Hung, Yucesan
Enver, Lee Insup, (2000), Distributed Web-
Based Simulation Optimization Proceedings of
the 2000 Winter Simulation Conference

Sabuncuoglu İ., E. Tekin. (2004) Simulation
Optimization: A Comprehensive Review on

Theory and Applications, IIE Transactions,
Vol: 36, pp: 1067-1081, 2004.

AUTHOR BIOGRAPHIES

SERDAR BOZOGLAN is an MSc student in the
Naval Operational Research masters programme
in the Institute of Naval Science and Engineering.
He holds a BSc in Industrial Engineering degree
where he received in 2002 from the Turkish
Naval Academy.

MURAT GUNAL is a lecturer in the Turkish
Naval Academy and also teaches in the Institute
of Naval Science and Engineering. He completed
his PhD and MSc studies in Lancaster University,
UK, in 2008 and 2000 respectively. His PhD
thesis’ title is “Simulation Modelling for
Performance Measurement in Hospitals”. He did
research and worked in simulation area many
years. His current research interest is simulation
optimisation.


