

SharpSim© Tutorials

Tutorial 1: M/M/n Service System Simulation
Tutorial 2: M/M/n Simulation using Excel input file

Tutorial 3: A Production/Inventory System Simulation

Ali Emre Varol, Arda Ceylan, Murat M. Günal

August - 2011

*SharpSim can be downloaded at http://sharpsim.codeplex.com/

http://sharpsim.codeplex.com/

 i

Contents

1 Introduction ... 3

2 Tutorial 1 .. 4

2.1 Creating a C# Project .. 5

2.2 Adding SharpSim reference to your project 5

2.3 Setting the simulation form .. 6

2.4 Writing the model code .. 7

2.5 State Change handlers .. 10

2.5.1 Run Event state change ... 10

2.5.2 Arrival Event state change ... 11

2.5.3 Start Event state change .. 12

2.5.4 EndService Event state change .. 12

2.5.5 Terminate Event state change .. 13

2.6 Creating an Entity: Customer Class 13

2.7 Running the application .. 13

3 Tutorial 2 .. 15

3.1 Setting the simulation form .. 15

3.2 Writing the model code .. 16

3.3 State Change handlers and Running the application . 18

4 Tutorial 3 .. 19

4.1 Problem Statement .. 19

4.2 Event Graph of the System ... 20

4.3 Creating Production/Inventory Model 22

4.3.1 Setting the simulation form ... 22

4.3.2 Creating the model .. 22

4.4 State Change handlers .. 27

4.4.1 Run Event state change ... 27

4.4.2 Arrival Event state change ... 28

4.4.3 StartProduction Event state change 28

4.4.4 EndProduction Event state change 29

4.4.5 Repair Event state change .. 29

4.4.6 Failure Event state change ... 30

4.4.7 Terminate Event state change .. 30

4.5 Running the application .. 31

References .. 32

List of Code Boxes
Code Box 2-1 “using” class in your example 7

Code Box 2-2 Defining your simulation model objects 7

Code Box 2-3 Instantiating the simulation object 8

Code Box 2-4 Creating the events ... 8

Code Box 2-5 Complete source code for Button Click event10

Code Box 2-6 Run Event state change handler 11

Code Box 2-7 Arrival Event state change handler 11

Code Box 2-8 Start Event state change handler 12

 ii

Code Box 2-9 EndService Event state change handler 12

Code Box 2-10 Terminate Event state change handler 13

Code Box 2-11 Customer Class .. 13

Code Box 3-1 “using” class in your example 15

Code Box 3-2 Defining your simulation model objects 16

Code Box 3-3 Instantiating the simulation object 16

Code Box 4-1 “using” class in your example 22

Code Box 4-2 Defining your simulation model objects 23

Code Box 4-3 Instantiating the simulation object 23

Code Box 4-4 Creating the events ... 23

Code Box 4-5 Adding State Change Listeners 24

Code Box 4-6 Instantiating Edges ... 24

Code Box 4-7 Complete Source Code for Button Click 26

Code Box 4-8 Run Event state change handler 27

Code Box 4-9 Arrival Event state change handler 28
Code Box 4-10 Start Production Event state change handler

 .. 29

Code Box 4-11 EndProduction Event state change handler 29

Code Box 4-12 Repair Event state change handler 30

Code Box 4-13 Failure Event state change handler 30

Code Box 4-14 Terminate Event state change handler 31

 3

1 INTRODUCTION

SharpSim is an open-source Discrete Event Simulation (DES) code
library developed in C#. You can build simulation models using
SharpSim by coding in C#. You can download SharpSim at
http://sharpsim.codeplex.com/. SharpSim implements event
scheduling DES world-view and therefore it is essential to
understand how event scheduling works. One way to learn event
scheduling is to start with Event Graphs (EGs).

 EGs are a way of conceptual representation of Event
Scheduling world-view and there are two main components of an
EG; nodes which represent events, and edges which represent
transitions between events. A simple EG is given in Figure 1-1 which
can be translated into the following sentence;

If condition (i) is true at the instant event A occurs, then event B will
immediately be scheduled to occur t time units in the future with
variables k assigned the values j

Figure 1-1 A Basic Event Graph

Note that Event A and Event B are the events which occur in the
system that is to be modelled, for example arrival of a customer,
starting a service etc.

SharpSim includes three main classes which are Simulation, Event,
Edge and three secondary classes which are Entity, Resource and
Stats, as shown in Figure 1-2. Please refer to SharpSim
documentation for detailed explanation of these classes.

 Figure 1-2 Class structure of SharpSim

S
h
a
r
p
S
i
m

C
l
a
s
s
S
i
m
u
l
a
t
i
o
n

C
l
a
s
s
E
d
g
e

C
l
a
s
s
E
v
e
n
t

C
l
a
s
s
R
e
s
o
u
r
c
e

C
l
a
s
s
E
n
t
i
t
y

SharpSim

Event Class

Simulation Class

Edge Class

Entity Class

Stats Class

Resource Class

http://sharpsim.codeplex.com/

 4

In this SharpSim tutorials set, three tutorials are given; Tutorial 1:
M/M/n Service System Simulation, which is Example 2 in SharpSim
pack, Tutorial 2: M/M/n Service System Simulation using Excel
input file, which is Example 1 in SharpSim pack, and Tutorial 3: A
Production/Inventory System Simulation, which is Example 3 in
SharpSim pack.

2 TUTORIAL 1

In this tutorial a simple queuing system will be modelled using
SharpSim. The Event Graph (EG) in Figure 2-1 has four events which
represent start of simulation, arrival of customers, start of service,
and end of service events in a queuing system. The variables are ID
(arriving customers’ ID number), S (number of available servers),
and C (Customer Entity).

Figure 2-1 Event graph for M/M/n Queuing Model.

The explanation of this EG is as follows;
When the Run event occurs, set the ID to 1 (first customer’s ID), the
S to n (there are n servers) and create C (an instance of Customer
object). Setting the attribute of Edge [1-2] to C is required to pass
the C object to the next event.

When the Arrival event occurs you first need to add the receiving
Customer object to the next event’s queue. Later you pull a
Customer entity from the Start Event’s queue and set this to the
edge’s attribute. Likewise, you need to create a new Customer
instance and set it to the self loop attribute. Finally, you need to set
the condition on edge between Arrival and Start events based on S
(number of available servers).

 5

When the Start event occurs, first customer in the Start event’s
queue is removed, since it is time for that customer to be served.
Number of available servers decremented by one and the receiving
customer entity is set as the parameter on the edge. This is to
transfer the customer to the leave (end of service) event.

Final event is Leave event. Executing a leave event means that a
customer finished the service and therefore number of available
servers (S) must be incremented by one and a new Start event
must be scheduled. Scheduling a Start event is possible if number
of customers waiting in the queue (Q) is non-zero. Q is the queue
count of Start event (Event[3]).

To build this model in SharpSim, first you need to create a C#
project and include SharpSim library.

2.1 Creating a C# Project

 Open a new Project (File/New Project) in Visual Studio 2010 (or
any other C# compiler such as C# 2008 Express edition)

 Choose Windows Forms Application and name it as shown in
Figure 2-2.

Figure 2-2 Creating a C# project

2.2 Adding SharpSim reference to your project

 After creating the project right click on “References” tree item in
the project explorer and choose “Add reference …”. Click on

 6

“Browse” tab and choose the “SharpSim.dll” file on your file
system, as shown in Figure 2-3.

Figure 2-3 Adding SharpSim.dll reference

After adding the reference you must see “SharpSim” in your project
explorer as shown in Figure 2-4. Note that if you want to use Excel
inputs you also need to include the third party Excel library NExcel.

Figure 2-4 Solution Explorer after adding SharpSim reference

2.3 Setting the simulation form

 Open the form in you project and add a rich text box and a button.

 In the code editor add the using statements as shown in Code Box

2-1 in the code section of your form.

 7

Code Box 2-1 “using” class in your example

2.4 Writing the model code

 Define the variables given in Code Box 2-2 in the global
declarations section of your form. Note you must define every event
and edge as seen in Figure 2-1.

Code Box 2-2 Defining your simulation model objects

Simulation provides a simulation platform where all the elements
of the model can interact with each other. Simulation class includes
the main properties of the simulation such as future event list and
simulation time and the mechanism which handles event
scheduling algorithm.
An Event represents a node in an Event Graph. An event is an
occurrence which causes a state change in the system.
An Edge represents an arc in an Event Graph. An edge is a
connection line between two events.

 On the button click event, instantiate the SharpSim simulation
object as in Code Box 2-3. Simulation class has two overloaded
constructors.

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;

using NExcel;
using SharpSim;

public partial class Example2 : Form
{

Simulation sim;

Event eRun;
Event eArrival;
Event eStart;
Event eEndService;
Event eTerminate;

Edge edge1_2;
Edge edge2_2;
Edge edge2_3;
Edge edge3_4;
Edge edge4_3;

}

 8

Code Box 2-3 Instantiating the simulation object

Tracklist : If true, executed events are shown on the Simulation
form of SharpSim.
Replication : Number of times the model will be replicated with
the given configuration.
Randomize Seed: If true, produces a new seed for each replication.
Seed No : Is used as a seed for Random type variable.

 Instantiate the Events as shown in Code Box 2-4. The Event class
has two overloaded constructors. You need to create every event
seen in Figure 2-1. Note that the Terminate event does not exist in
the EG but since an event to stop the model is required you
explicitly need to add this event to your model code.

Code Box 2-4 Creating the events

No : Identification string of the event.
Name : Name of the event.
Priority : Priority of the event.
Execution Time : Simulation time which the event will be executed

 After creating the events, you need to add State Change Listeners.
State change listeners are related to C# event handling mechanism
and help connect SharpSim events with C# form events, for
example when the eRun event occurs in SharpSim, Run method of

private void button1_Click(object sender, EventArgs e)
{
 sim = new Simulation(true, 10, false);

 eRun = new Event("1", "Run", 1, 0);
eArrival = new Event("2", "Arrival", 4);
eStart = new Event("3", "Start", 2);
eEndService = new Event("4", "EndService", 3);
eTerminate = new Event("5", "Terminate", 5, 50);

 9

this form (which will be explained later) will be executed.

 Instantiate the Edges. You need to create every edge, the arrows
between events, in Figure 2-1. The Edge class has three
parameters; name, source event, and target event.

Name : Name of the edge.
SourceEvent : Arc's departing event.
TargetEvent : Arc's arriving event

The modeller can set the time distribution and the distribution
parameters on an edge by setting its “.dist” and “.mean”
properties.

 Complete source code for button click event is shown in Code Box
2-5.

 The penultimate line “sim.CreateStats("2-4");” is written to collect
statistics for the delay time between events 2 and 4. The delay
between these two events means the total time of customers in
the system.

 Final line “sim.Run()” calls the main simulation run method and
the simulation starts.

//State change listeners
Run(eRun);
Arrival(eArrival);
Start(eStart);
EndService(eEndService);
Terminate(eTerminate);

 edge1_2 = new Edge("1-2", eRun, eArrival);
edge2_2 = new Edge("2-2", eArrival, eArrival);
edge2_2.dist = "exponential";
edge2_2.mean = 5.0;
edge2_3 = new Edge("2-3", eArrival, eStart);
edge3_4 = new Edge("3-4", eStart, eEndService);
edge3_4.dist = "exponential";
edge3_4.mean = 5.0;
edge4_3 = new Edge("4-3", eEndService, eStart);

 10

Code Box 2-5 Complete source code for Button Click event

2.5 State Change handlers

When a SharpSim event occurs, its corresponding method in the
form is also executed. These methods are coded in the model file
and inside these methods there are state change related codes,
such as incrementing state variables and creating new entities.

Inside a state change handler it is essential to write code inside
“evt.EventExecuted += delegate(object obj1, EventInfoArgs e){

...}” block.

2.5.1 Run Event state change

Translation of the pseudo code in Figure 2-1 is;

 Set the ID variable to 1 which means that the very first arriving
customer’s ID will be 1.

 Set the S variable to 2 which means that we have initially 2
servers.

private void button1_Click(object sender, EventArgs e)
{

sim = new Simulation(true, 10, false);

eRun = new Event("1", "Run", 1, 0);
eArrival = new Event("2", "Arrival", 4);
eStart = new Event("3", "Start", 2);
eEndService = new Event("4", "EndService", 3);
eTerminate = new Event("5", "Terminate", 5, 50);

//State change listener
// First do state changes and later event schedules (creating edge)
Run(eRun);
Arrival(eArrival);
Start(eStart);
EndService(eEndService);
Terminate(eTerminate);

//Create edge (event schedule)
edge1_2 = new Edge("1-2", eRun, eArrival);
edge2_2 = new Edge("2-2", eArrival, eArrival);
edge2_2.dist = "exponential";
edge2_2.mean = 5.0;
edge2_3 = new Edge("2-3", eArrival, eStart);
edge3_4 = new Edge("3-4", eStart, eEndService);
edge3_4.dist = "exponential";
edge3_4.mean = 5.0;
edge4_3 = new Edge("4-3", eEndService, eStart);

//collecting statistics
sim.CreateStats("2-4");

//RUN THE SIMULATION
sim.Run();

}

 11

 Create a new customer instance and,

 Set the edge between Event 1 and 2 parameter value to this new
customer as shown in Code Box 2-6.

Code Box 2-6 Run Event state change handler

2.5.2 Arrival Event state change

On an Arrival event (Code Box 2-7);

 Add the arriving Customer to the Start event’s queue.

 Set the attribute of the edge between events 2 and 3 to the first
customer waiting in the Start event’s queue.

 Increment the global variable ID by one.

 Create a new customer

 Set the self loop creating arrival event’s edge attribute to this new
customer

 Set the edge between events 2 and 3 condition to True, if the
number of servers available is greater than 0, and False otherwise.

Code Box 2-7 Arrival Event state change handler

public void Run(Event evt)
{
 evt.EventExecuted += delegate(object obj1, EventInfoArgs e)
 {
 //State changes will be written this section as shown below.
 ID = 1;
 S = 2;
 Customer customer = new Customer(ID);
 edge1_2.attribute = customer;
 };
}

public void Arrival(Event evt)
{
 evt.EventExecuted += delegate(object obj1, EventInfoArgs e)
 {
//To implement parameter passing, first you need to push the parameter to the queue
//and then pull the first customer in the queue (FIFO queue discipline)

 eStart.queue.Add(e.evnt.parameter);
 edge2_3.attribute = eStart.queue[0];

 ID++;
 Customer cust = new Customer(ID);
 edge2_2.attribute = cust;

 if (S > 0)
 edge2_3.condition = true;
 else
 edge2_3.condition = false;
 };
}

 12

2.5.3 Start Event state change

On the Start event (Code Box 2-8);

 Remove the first customer in the Start Event’s queue

 Decrement the number of servers available by one

 Set the attribute value of the edge between events 3 and 4.

Code Box 2-8 Start Event state change handler

2.5.4 EndService Event state change

On the EndService event (Code Box 2-9);

 Increment the number of available servers by one

 If the number of customers waiting in the Start Event’s queue
then set the condition on edge between events 4 and 3 to false.
This means that there is no one waiting to be served.

 Otherwise, set the condition to True and set the first customer in
the Start Event’s queue to the attribute of the edge between
events 4 and 3.

 Add a statistics collection line

Code Box 2-9 EndService Event state change handler

public void Start(Event evt)
{
 evt.EventExecuted += delegate(object obj1, EventInfoArgs e)
 {
 eStart.queue.RemoveAt(0);
 S--;
 edge3_4.attribute = e.evnt.parameter;
 };
}

public void EndService(Event evt)
{
 evt.EventExecuted += delegate(object obj1, EventInfoArgs e)
 {
 S++;
 if (eStart.queue.Count() == 0)
 edge4_3.condition = false;
 else
 {
 edge4_3.condition = true;
 edge4_3.attribute = eStart.queue[0];
 }

 Stats.CollectStats("2-4", e.evnt.parameter.ReturnInterval("2", "4"));
 };
}

 13

2.5.5 Terminate Event state change

On the Terminate event () which is not in the event graph;

 Write a message to indicate that the replication is ended.

 Add the mean statistics to the global statistics dictionary.

Code Box 2-10 Terminate Event state change handler

2.6 Creating an Entity: Customer Class

SharpSim provides an abstract Entity class which can be extended
to create model related entities. In our example the entities are
customers and therefore a Customer class is created as shown in
Code Box 2-11. It is a simple class with only an id property.

Code Box 2-11 Customer Class

2.7 Running the application

Select Program.cs on the right-side and double click it and be sure
that the name of the form is written at Application.Run row as
shown in Figure 2-5. Now, the model is ready to run. Build your
application and run it. You will see two windows as seen in Figure
2-6.

class Customer : Entity
{
 public Customer(int id)
 : base (id)
 {
 this.identifier = id;
 }
}

public void Terminate(Event evt)
{
 evt.EventExecuted += delegate(object obj1, EventInfoArgs e)
 {
 richTextBox1.Text += "Replication No : " + Simulation.replicationNow + "
 ended." + "\n";
 Stats.AddDataToStatsGlobalDictionary("2-4", Stats.Dictionary["2-4"].mean);
 };
}

 14

Figure 2-5 Program code

Figure 2-6 Output windows

 15

3 TUTORIAL 2

This tutorial is the second part of SharpSim tutorial series. As
presented in Tutorial 1, you can build your models by instantiating
your events and edges inside the code. This may be tedious when
you have many events. SharpSim also provides methods to read
event and edge information from an Excel file. This tutorial
describes how a model of the EG given in Figure 2-1 is built using
the Excel input file.

As stated before, this tutorial is only different than tutorial 1 in
terms of the inputs being read from an Excel file. For this reason
you must also include a third party Excel library NExcel in your C#
project. The DLL for NExcel is supplied with the SharpSim.

Figure 3-1 Solution Explorer after adding SharpSim reference

3.1 Setting the simulation form

 Open the form in you project and add a rich text box, a button,
and a OpenFileDialogbox.

 In the code editor add the using statements as shown in Code Box

2-1 in the code section of your form.

Code Box 3-1 “using” class in your example

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;

using NExcel;
using SharpSim;

 16

3.2 Writing the model code

 Define the variables given in Code Box 2-2 in the global
declarations section of your form. This time you do not need to
define all events and edges here, since these will be read from
Excel file.

Code Box 3-2 Defining your simulation model objects

The constructor of the form includes a call to initialize components.

 On the button click event, insert the code in Code Box 2-3.

Code Box 3-3 Instantiating the simulation object

//State change listeners

public partial class Example1 : Form
{
 Simulation sim;

 int ID;

 int S;

 public Example1()

 {

 InitializeComponent();

 }

}

private void button1_Click(object sender, EventArgs e)

{

this.openFileDialog1.FileName = "*.xls";

this.openFileDialog1.InitialDirectory = Application.StartupPath;

if (this.openFileDialog1.ShowDialog() == DialogResult.OK)

{

//read the excel file

string filename = openFileDialog1.FileName;

Workbook workbook = Workbook.getWorkbook(filename);

sim = new Simulation(true, 3, true);

sim.CreateEvents(workbook.getSheet("Events"));

 //State change listeners
Run(sim.events["1"]);

Arrival(sim.events["2"]);

Start(sim.events["3"]);

EndService(sim.events["4"]);

Terminate(sim.events["5"]);

sim.CreateEdges(workbook.getSheet("Edges"));

sim.CreateStats(workbook.getSheet("Stats"));

}

sim.StartSimulationThread();

}

 17

First two statements and the “if” statement are about opening the
Excel file. You specify the file extension and the start-up path. The
“if” statement checks whether the file chosen by the Open File
Dialog exists. If the file opening is successful then a Workbook
instance is created. This part comes from NExcel.

As in tutorial 1, a simulation instance is created by specifying
tracklist on/off, number of replications, and randomizing seed
on/off.

Sim.createEvents method is a SharpSim method. It reads the
“Events” (or any other worksheet with the desired format)
worksheet of the Excel file. The format of this worksheet is given
below. The first row must include the labels; “Event No”, “Name”,
“Priority”, and “Exec.Time” respectively. The first column is the
integer identifier of events. The second column is a text area to
name events. The third column is the priority (an event with bigger
priority value is executed first). The last column is the time
scheduled time of an event. If a value is given, at the beginning of
the simulation, these events are added to the Future Event List
(FEL). Others which have no Exec.Time value are the events that
are scheduled during the simulation run.

As in the first tutorial, you need to write state change listeners for
every event. An event listener takes one argument of event type.
You can directly specify an event from the simulation and using IDs.

CreateEdges method reads the edges data from “Edges”
worksheet. The first column is a text label for the edge. It includes
IDs of the events as text. Following two columns are the names of
source and the target events. “Inter.Time” is the time on the edge.
Remember that you need to specify a time delay on edges. This
means that when executing the source event after a delay of time
the target event must be executed (in other words scheduled in the
FEL). This column is to specify a deterministic time delay. Whereas
in the following three columns you enter some values to specify
“stochastic” time delays. In the “Dist”, you enter a distribution
name. In “Mean” and “Std.Dev” you enter first two parameters of
the distribution (if the distribution is 1-parameter-dist then you

 18

enter the parameter value into the “mean” cell). Following
distributions are included in version 1.1:
"exponential", "normal", “uniform", "gamma", "chiSquare",
"inverseGamma", "weibull", "cauchy", "studentT", "laplace",
"logNormal", "beta".

 Explanations of “State Change Listeners” are done in the previous
tutorial. Note that State change listeners are related to C# event
handling mechanism and help connect SharpSim events with C#
form events, for example when the Run event occurs in SharpSim,
Run method of this form will be executed. The links are done by
“sim.events["1"]” lines in the code. The sim variable has an events
collection and ID number as string is the key in this collection.

3.3 State Change handlers and Running the application

All the state change handlers, the methods which are linked to
simulation events, are the same as in the first tutorial.

Creating the Entity class and running the application are explained
in the first tutorial.

 19

4 TUTORIAL 3

In this tutorial we present a generic model of a
production/inventory system which is presented by Altiok and
Melamed, 1997. The system to be modeled is a production facility
which is subject to failures. There is one type of product. The
products produced at this facility are stored in a warehouse. This
generic model illustrates how an inventory control policy regulates
flow of products between production and inventory facilities.

First two tutorials used SharpSim v.1.0 however this tutorial is
using SharpSim v.1.1. The main addition to this version is the
addition of “Cancelling Edge”. Some other improvements as
published at the official website are also made

4.1 Problem Statement

The production system is composed of three stages;

1. Filling each container unit (e.g., bottles)
2. Sealing each unit
3. Placing labels on each unit.

For modeling purposes, the processing times of individual stages
are combined into a single-stage processing time.

Figure 4-1 depicts a schematic diagram of the system (taken from
Altiok and Melamed, 2007). Raw-materials are stored in a storage
area and are used to produce the products in the production
process. Finished products are sent to the warehouse. Customers
arrive at the warehouse with product requests (demands), and if a
request cannot be fully satisfied by on-hand inventory, the
unsatisfied portion represents lost product order.

Figure 4-1: A production/inventory system (taken Altiok and Melamed 2007)

The following assumptions are made:

• There is always sufficient raw material in storage, so the process
never starves.

 20

• Product processing is carried out in lots of 5 units, and finished
lots are placed in the warehouse. Lot processing time is uniformly
distributed between 10 and 20 minutes.

• The production process experiences random failures, which may
occur at any point in time. Times between failures are
exponentially distributed with a mean of 200 minutes, while repair
times are normally distributed, with a mean of 90 minutes and a
standard deviation of 45 minutes.

• Warehouse operations implement (r, R) inventory control policy.
The warehouse has a capacity (target level) of R=500 units, so that
the production process stops when the inventory in the warehouse
reaches the target level. From this point and on, the production
process becomes blocked and remains inactive until the inventory
level drops to or below the reorder point r=150 units (the
production process resumes as soon as the reorder level is down-
crossed.) Note that this is a convenient policy when a resource
needs to be shared among different types of products. For
instance, when the production process becomes blocked, it may
actually be assigned to another task or product that is not part of
this system.

• The inter-arrival times between successive customers are
uniformly distributed between 3 to 7 hours, and individual demand
sizes are distributed uniformly between 50 and 100 units. For
programming simplicity, demand sizes are allowed to be any real
number in this range. On customer arrival, the inventory is
immediately checked. If there is sufficient stock on hand, that
demand is promptly satisfied. Otherwise, the unsatisfied portion of
the demand is lost.

Some typical performance measures of interest are:

 Average inventory level

 Percentage of customers whose demand is not completely satisfied

 Average lost demand size given that it is not completely satisfied

4.2 Event Graph of the System

The event graph of the system described in the previous section is
given in Figure 4-2, as it is crucial before building a SharpSim
model.

 21

Figure 4-2: Event Graph for production/inventory model

The explanation of this EG is as follows;

When the Run event occurs, set the ID to 1 (first customer’s ID), the
S to 1, the OH (On-hand inventory) to 250, the R (inventory
position) to 500 and the r (reorder point) to 150. This is the
initialization phase and Run event is a triggering event for the rest
of the events. We need to set the conditions of Edge [1-2] and Edge
[1-6] to true.

When the Arrival event occurs you first need to increase ID by one
and generate random D (demand) according to uniform
distribution with parameters 50 and 100. Later you check on-hand
inventory. If it is more than D, you satisfy the customer. Otherwise,
LC (Lost Customer) incremented by one, calculate LQ (Lost
Quantity) and set OH to 0. Finally, you need to set the condition on
edge between Arrival and Start events based on S (number of
available servers) and on-hand inventory. Note that <R, r>
inventory model policy is: when on-hand inventory level hits r
order up to R.

When the StartProduction event occurs, number of available
servers is decremented by one.

When the EndProduction event occurs, number of available servers
is incremented by one and on-hand incremented by five.
Scheduling a Start event is possible if on-hand is less than R.

 22

When the Failure event occurs, scheduled first EndProduction
event in Future Event List (FEL) is deleted. Edge [6-4] is a cancelling
edge and this is one of the new features of SharpSim. Also, number
of available servers is decremented by one to cancel Start event
condition. Schedule next Repair event.

When the Repair event occurs, number of available servers is
incremented by one.

We mentioned creating C# Project, adding SharpSim as a reference
and writing the model code using SharpSim in Tutorial 1. We will
explore new properties of SharpSim, learn how to use them and
some recommendations for users by creating production/inventory
model at the following sections. Note that in this tutorial, as in
Tutorial 1, Excel input is not used.

4.3 Creating Production/Inventory Model

4.3.1 Setting the simulation form

 Add a form in your project and add a rich text box and a button.

 In the code editor add the using statements as shown in Code Box

2-1 in the code section of your form.

Code Box 4-1 “using” class in your example

4.3.2 Creating the model

 Define the variables given in Code Box 2-2 in the global declarations
section of your form. Note that you must define every event and edge

as seen in Figure 4-2.

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;

using NExcel;
using SharpSim;

 23

Code Box 4-2 Defining your simulation model objects

 On the button click event, instantiate the SharpSim simulation
object as shown in Code Box 2-3.

Code Box 4-3 Instantiating the simulation object

 Instantiate the Events as shown in Code Box 2-4. You need to
create every event seen in Figure 4-2. Note that the Terminate
event does not exist in the EG but since an event to stop the model
is required, you explicitly need to add this event to your model
code.

Code Box 4-4 Creating the events

public partial class ProductionExample : Form

{

 Simulation sim;

 Event eRun;

 Event eArrival;

 Event eStartProduction;

 Event eEndProduction;

 Event eRepair;

 Event eFailure;

 Event eTerminate;

 Edge edge1_2;

 Edge edge2_2;

 Edge edge2_3;

 Edge edge3_4;

 Edge edge4_3;

 Edge edge1_6;

 Edge edge5_3;

 Edge edge5_6;

 Edge edge6_5;

 Edge cedge6_4; //canceling edge

}

private void button1_Click(object sender, EventArgs e)
{
 sim = new Simulation(true, 10, false);

eRun = new Event("1", "Run", 1, 0);

eArrival = new Event("2", "Arrival", 6);

eStartProduction = new Event("3", "StartProduction", 4);

eEndProduction = new Event("4", "EndProduction", 5);

eRepair = new Event("5", "Repair", 2);

eFailure = new Event("6", "Failure", 3);

eTerminate = new Event("7", "Terminate", 7, 1000000);

 24

edge1_2 = new Edge("1-2", eRun, eArrival);

//Version 1.1 property

List<object> edge1_2Dist = new List<object>();

edge1_2Dist.Add("uniform");

edge1_2Dist.Add(180.0);

edge1_2Dist.Add(420.0);

edge1_2.distribution = edge1_2Dist;

//Version 1.0 edge type

//edge1_2.dist = "uniform";

//edge1_2.param1 = 180.0;

//edge1_2.param2 = 420.0;

 After creating the events, you need to add State Change Listeners.
State change listeners are related to C# event handling mechanism
and help connect SharpSim events with C# form events. For
example, when the eRun event occurs in SharpSim, Run method of
this form (which will be explained later) will be executed.

Code Box 4-5 Adding State Change Listeners

 Instantiate the Edges. You need to create every edge, the arrows
between events, in Figure 4-2.

Code Box 4-6 Instantiating Edges

//State change listeners
Run(eRun);

Arrival(eArrival);

StartProduction(eStartProduction);

EndProduction(eEndProduction);

Repair(eRepair);

Failure(eFailure);

Terminate(eTerminate);

 25

 As it’s shown in Code Box 4-6, version 1.1 has an overloaded
method for ComputeValue (in Edge.cs). Compute Value takes a List
in which the first element is the distribution name. The modeler
can set the time distribution and the distribution parameters on an
edge by using these two overloaded methods.

 At version 1.1, following distributions are added to SharpSim
library.

o Exponential
o Normal
o Uniform
o Gamma
o Chi Square
o Inverse Gamma
o Weibull
o Cauchy
o Student T
o Laplace
o LogNormal
o Beta

 At version 1.1, also, the cancelling edge mechanism is added to
SharpSim. There is a boolean parameter in the Edge class as shown
with a red circle in Code Box 4-6. This parameter is set to true for a
cancelling edge.

edge2_2 = new Edge("2-2", eArrival, eArrival);

edge2_2.dist = "uniform";

edge2_2.param1 = 180.0;

edge2_2.param2 = 420.0;

edge2_3 = new Edge("2-3", eArrival, eStartProduction);

edge3_4 = new Edge("3-4", eStartProduction, eEndProduction);

edge3_4.dist = "uniform";

edge3_4.param1 = 10;

edge3_4.param2 = 20;
edge4_3 = new Edge("4-3", eEndProduction, eStartProduction);

edge1_6 = new Edge("1-6", eRun, eFailure);

edge1_6.dist = "exponential";

edge1_6.param1 = 200.0;

edge5_3 = new Edge("5-3", eRepair, eStartProduction);

edge5_6 = new Edge("5-6", eRepair, eFailure);

edge5_6.dist = "exponential";

edge5_6.param1 = 200.0;

edge6_5 = new Edge("6-5", eFailure, eRepair);

edge6_5.dist = "normal";

edge6_5.param1 = 90.0;

edge6_5.param2 = 45.0;

//Version 1.1 property

//Cancelling edge last parameter of edge indicates cancelling edge

cedge6_4 = new Edge("6-4", eFailure, eEndProduction, true);

 26

 Complete source code for button click event is shown in
Code Box 4-7.

Code Box 4-7 Complete Source Code for Button Click

private void button1_Click(object sender, EventArgs e)
{
sim = new Simulation(false, 1000, false);

eRun = new Event("1", "Run", 1, 0);

eArrival = new Event("2", "Arrival", 6);

eStartProduction = new Event("3", "StartProduction", 4);

eEndProduction = new Event("4", "EndProduction", 5);

eRepair = new Event("5", "Repair", 2);

eFailure = new Event("6", "Failure", 3);

eTerminate = new Event("7", "Terminate", 7, 1000000);

//State change listener

Run(eRun);

Arrival(eArrival);

StartProduction(eStartProduction);

EndProduction(eEndProduction);

Repair(eRepair);

Failure(eFailure);

Terminate(eTerminate);

//Create edge (event schedule)

edge1_2 = new Edge("1-2", eRun, eArrival);

//Version 1.1 property

List<object> edge1_2Dist = new List<object>();

edge1_2Dist.Add("uniform");

edge1_2Dist.Add(180.0);

edge1_2Dist.Add(420.0);

edge1_2.distribution = edge1_2Dist;

//Version 1.0 edge type

//edge1_2.dist = "uniform";

//edge1_2.param1 = 180.0;

//edge1_2.param2 = 420.0;

edge2_2 = new Edge("2-2", eArrival, eArrival);

edge2_2.dist = "uniform";

edge2_2.param1 = 180.0;

edge2_2.param2 = 420.0;

edge2_3 = new Edge("2-3", eArrival, eStartProduction);

edge3_4 = new Edge("3-4", eStartProduction, eEndProduction);

edge3_4.dist = "uniform";

edge3_4.param1 = 10;

edge3_4.param2 = 20;

edge4_3 = new Edge("4-3", eEndProduction, eStartProduction);

edge1_6 = new Edge("1-6", eRun, eFailure);

edge1_6.dist = "exponential";

edge1_6.param1 = 200.0;

edge5_3 = new Edge("5-3", eRepair, eStartProduction);

edge5_6 = new Edge("5-6", eRepair, eFailure);

edge5_6.dist = "exponential";

edge5_6.param1 = 200.0;

edge6_5 = new Edge("6-5", eFailure, eRepair);

edge6_5.dist = "normal";

edge6_5.param1 = 90.0;

edge6_5.param2 = 45.0;

//Version 1.1 property

//Cancelling edge last parameter of edge indicates cancelling edge

cedge6_4 = new Edge("6-4", eFailure, eEndProduction, true);

sim.CreateStats("SOHtimeAverage");

sim.CreateStats("Unsatisfied Customer");

sim.CreateStats("Lost Demand Size");

sim.CreateStats("Total Customer");

sim.CreateStats("Unsatisfied Ratio");

sim.Run();
}

 27

 “sim.CreateStats("SOHtimeAverage");” is written to collect
statistics for the average on-hand inventory. Average on-hand
inventory is a time weighted average. This type of statistics is also a
new feature in version 1.1.

 Final line “sim.Run()” calls the main simulation run method and the
simulation starts.

4.4 State Change handlers

When a SharpSim event occurs, its corresponding method in the
form is also executed. These methods are coded in the model file
and inside these methods there are state change related codes,
such as incrementing state variables and creating new entities.

Inside a state change handler, it is essential to write code inside
“evt.EventExecuted += delegate(object obj1, EventInfoArgs e){

...}” block.

4.4.1 Run Event state change

Translation of the event graph in Figure 4-2 is as follows;

 Set the initial statistical data values to 0.

 Set variable S to 1, which means that we have initially 1 production
machine.

 Set OnHand to 250, which means that initial value of on-hand
inventory is 250. Also add this value to Stats dictionary.

 Set BatchSize to 5, which means that every production event will
produce 5 products (in batches).

 Set r to 150, which means that reorder point is equal to 150.

 Set bigR to 500 which means that the system will produce up to
500.

Code Box 4-8 Run Event state change handler

public void Run(Event evt)

{

 evt.EventExecuted += delegate(object obj1, EventInfoArgs e)

 {

 ID = 0;

 UnsatisfiedCustomer = 0;

 LostDemandSize = 0;

 S = 1;

 OnHand = 250;

 Stats.CollectStats("SOHtimeAverage", new double[2]{ Simulation.clock, OnHand });

 BatchSize = 5;

 r = 150;

 bigR = 500;

 };

}

 28

4.4.2 Arrival Event state change

On an Arrival event (Code Box 2-7);

 Increase Customer ID by one.

 Generate random demand.

 Check the condition of OnHand inventory according to Demand, if
it’s available then sell them, otherwise;

o Sell all OnHand then set it to 0.
o Compute LostDemandSize
o Increase UnsatisfiedCustomer by one.
o Collect statistical data.

 Set the edge between events 2 and 3 condition to True, if OnHand
is less than or equal to r and the number of servers available is
greater than 0, and False otherwise.

Code Box 4-9 Arrival Event state change handler

4.4.3 StartProduction Event state change

On the Start event (Code Box 2-8);

 Decrease the number of server available by one

public void Arrival(Event evt)

{

 evt.EventExecuted += delegate(object obj1, EventInfoArgs e)

 {

 ID++;

 Demand = RandomGenerate.rnd.Next(50, 100);

 if (OnHand > Demand)

 {

 OnHand -= Demand;

 Stats.CollectStats("SOHtimeAverage", new double[2] { Simulation.clock, OnHand });

 }

 else

 {

 LostDemandSize += Demand - OnHand;

 Stats.CollectStats("Lost Demand Size", LostDemandSize);

 OnHand = 0;

 Stats.CollectStats("SOHtimeAverage", new double[2] { Simulation.clock, OnHand });

 UnsatisfiedCustomer++;

 }

 if ((OnHand<r) && (S > 0))

 edge2_3.condition = true;

 else

 edge2_3.condition = false;

 };

}

If the modeler requires to generate random numbers inside
the model, “rnd’ static variable in RandomGenerate class must
be used, such as “RandomGenerate.rnd.Next(50,
100);”. C#’s random number generator must NOT be used.

 29

Code Box 4-10 Start Production Event state change handler

4.4.4 EndProduction Event state change

On the EndProduction event (Code Box 2-9);

 Increase the number of available servers by one.

 Add BatchSize to OnHand.

 Add a statistics collection line.

 If OnHand is less than bigR, set the condition on edge between
events 4 and 3 to true. This means that the system will produce
more products.

 Otherwise, set the condition to false

Code Box 4-11 EndProduction Event state change handler

4.4.5 Repair Event state change

On the Repair event (Code Box 4-12);

 Increase the number of available server.

 If OnHand is less than r, set the condition on edge between events
5 and 3 to true. This means that the system will start production.

 To schedule next failure, set the condition on edge between events
5 and 6 to true.

public void StartProduction(Event evt)

{

 evt.EventExecuted += delegate(object obj1, EventInfoArgs e)

 {

 S--;

 };

}

public void EndProduction(Event evt)

{

 evt.EventExecuted += delegate(object obj1, EventInfoArgs e)

 {

 S++;

 OnHand += BatchSize;

 Stats.CollectStats("SOHtimeAverage", new double[2] { Simulation.clock,

 OnHand });

 if (OnHand < bigR)

 edge4_3.condition = true;

 else

 edge4_3.condition = false;

 };

}

 30

Code Box 4-12 Repair Event state change handler

4.4.6 Failure Event state change

On the Failure event (Code Box 4-13);

 Decrease the number of available server.

 Scheduled first EndProduction event in FEL is deleted. Edge [6-4] is
a cancelling edge and this is one of the new features of SharpSim.

 To schedule next Repair event, set the condition on edge between
events 6 and 5 to true.

Code Box 4-13 Failure Event state change handler

4.4.7 Terminate Event state change

On the Terminate event (Code Box 4-14) which is not in the event
graph;

 Write a message to indicate that the replication is ended.

 Add collected statistics to the global statistics dictionary.

public void Repair(Event evt)

{

 evt.EventExecuted += delegate(object obj1, EventInfoArgs e)

 {

 S++;

 if (OnHand < r)

 {

 edge5_3.condition = true;

 }

 else

 {

 edge5_3.condition = false;

 }

 edge5_6.condition = true;

 };

}

public void Failure(Event evt)

{

 evt.EventExecuted += delegate(object obj1, EventInfoArgs e)

 {

 S--;

 cedge6_4.cancellingEdge = true;

 edge6_5.condition = true;

 };

}

 31

Code Box 4-14 Terminate Event state change handler

4.5 Running the application

Select Program.cs on the right-side and double click it and be sure
that the name of the form is written at Application.Run row as
shown in Figure 2-5. Now, the model is ready to run. Build your
application and run it. You will see two windows as seen in Figure
2-6.

Figure 4-3 Program code

public void Terminate(Event evt)

{

 evt.EventExecuted += delegate(object obj1, EventInfoArgs e)

 {

 unsatisfiedRatio = (double) UnsatisfiedCustomer / ID;

 richTextBox1.Text += "Replication No : " + Simulation.replicationNow + " ended." + "\n";

 Stats.AddDataToStatsGlobalDictionary("SOHtimeAverage",

 Stats.Dictionary["SOHtimeAverage"].timeWeightedAverage);

 Stats.AddDataToStatsGlobalDictionary("Unsatisfied Customer", UnsatisfiedCustomer);

 Stats.AddDataToStatsGlobalDictionary("Total Customer", ID);

 Stats.AddDataToStatsGlobalDictionary("Lost Demand Size", Stats.Dictionary["Lost Demand Size"].mean);

 Stats.AddDataToStatsGlobalDictionary("Unsatisfied Ratio", unsatisfiedRatio);

 };

}

 32

Figure 4-4 Output windows

REFERENCES

Altiok, T., B.Melamed, 2007, Simulation Modeling and Analysis with
Arena, Elsevier.

	1 Introduction
	2 Tutorial 1
	2.1 Creating a C# Project
	2.2 Adding SharpSim reference to your project
	2.3 Setting the simulation form
	2.4 Writing the model code
	2.5 State Change handlers
	2.5.1 Run Event state change
	2.5.2 Arrival Event state change
	2.5.3 Start Event state change
	2.5.4 EndService Event state change
	2.5.5 Terminate Event state change

	2.6 Creating an Entity: Customer Class
	2.7 Running the application

	3 Tutorial 2
	3.1 Setting the simulation form
	3.2 Writing the model code
	3.3 State Change handlers and Running the application

	4 Tutorial 3
	4.1 Problem Statement
	4.2 Event Graph of the System
	4.3 Creating Production/Inventory Model
	4.3.1 Setting the simulation form
	4.3.2 Creating the model

	4.4 State Change handlers
	4.4.1 Run Event state change
	4.4.2 Arrival Event state change
	4.4.3 StartProduction Event state change
	4.4.4 EndProduction Event state change
	4.4.5 Repair Event state change
	4.4.6 Failure Event state change
	4.4.7 Terminate Event state change

	4.5 Running the application

	References

