

Notes on Naval Simulation

Murat M. Gunal

Industrial Engineering Department
Turkish Naval Academy
Tuzla, Istanbul, Turkey

Draft v.0.2

July - 2010

Genoa, ITALY

Draft v.0.2

Murat Gunal © i

Contents

1 Introduction .. 2

1.1 OpenMap and Simkit .. 3

1.2 The Model Scope ... 4

2 Background Information ... 4

2.1 Geographical Information Systems (GIS) 4

2.2 Simulation Software .. 5

3 Building a Basic Naval Model ... 6

3.1 OpenMap.. 6

3.1.1 Input file (openmap.properties) 6

3.1.2 Running the application.. 7

3.1.3 Writing a Simulation Layer for OpenMap 8

3.2 Simkit .. 14

References ... 17

Draft v.0.2

Murat Gunal © 2

1 INTRODUCTION

The purpose of this note is to show how a basic model of naval
operations can be built. This note is written as a tutorial rather than
a text to explain the concepts in naval simulation modelling. The
readers are assumed that they can understand Java programming
language.

Using this tutorial, it is aimed that the reader can build the model
which its user interface is shown in Figure 1-1. In this model the
following packages are used;

 OpenMap (http://www.openmap.org)

 Simkit (http://diana.nps.edu/Simkit/)

Figure 1-1 Screen shot of the model.

http://www.openmap.org/
http://diana.nps.edu/Simkit/

Draft v.0.2

Murat Gunal © 3

The user interface in Figure 1-1 is the default interface of OpenMap
package, with some minor additions. This model uses graphical
features of OpenMap package. You extend its default appearance
by adding new features to it. For example the A and B letters, and
circles around them, are moving simulation entities, and the texts
“Simulation Time” and “Number of Detections” on the top left
corner are simulation texts. By writing Java code, you programme
these simulation objects.

The model presented in this notes is based on conceptualisation of
movement and detection in Simkit (Buss and Sanchez, 2005).

1.1 OpenMap and Simkit

The OpenMap package is a Geographical Information System (GIS)
package written in Java. It is open source and therefore full source
code can be downloaded from the web site. In addition, the
package comes with the API which the programmer can use class
libraries and extend them if needed.

The Simkit package is a Discrete Event Simulation (DES) code library
also written in Java. It is developed by Buss (2001). Although it is a
generic simulation package, it performs better in modelling
defence systems such as naval operations. This package is taught at
graduate level simulation course in the U.S. Naval Postgraduate
School (NPS). There are ample notes and examples on the website
on how a Simkit model can be built.

There is no direct link between these two pieces of software.
However, as this tutorial shows it is possible to link them two and
use together. This link is first established in a masters thesis in NPS
(Mack, 2000) and showed that they can work well together. Simkit
and a different GIS (GeoKit) is used in another study (Yildirim
et.al,2009) where military deployment operations are analysed.
Buss and Ahner (2006) is one of the other applications of Simkit.

Distinction of this modelling exercise is that it uses ready-made
classes of Simkit and OpenMap. Therefore, it allows fast and
minimum effort modelling. However, the modeller can still extend
the work here, for example by adding rules of engagement to the
vessels.

Since OpenMap and Simkit are written in Java, we will develop our
model in Java too. There are a few Java compilers in the market,

Draft v.0.2

Murat Gunal © 4

such as Borland’s, Microsoft’s, and Sun’s. You may use any of these
compilers to build this model, however in this tutorial, Eclipse (ref.),
a free Java programming environment is used.

1.2 The Model Scope

The model in this exercise is a fictional case. It is a simple search
and detection scenario on the sea. There is a searcher (B) and there
is a target (A), shown in Figure 1-1. They only move in an area
which its boundaries are known (the red rectangle). The target
moves linearly and patrols along the middle line of the rectangle.
The searcher, however, moves linearly but in random piecewise
routes, e.g. starting and ending locations of each route is randomly
determined.

2 BACKGROUND INFORMATION

In this section a general overview on Geographical Information
Systems and simulation software is given.

2.1 Geographical Information Systems (GIS)

A GIS is software to deal with the earth’s geography. There are
many GIS packages and tools in the market. ARCView, Google
Maps, GeoKIT, NASA World Wind, Digital Nautical Chart, Falcon
View, and OpenMap are some of the best known GIS software.
Among these software some of them require licence, in which case
you need to pay for it, but some others are freely available and
open source, such as OpenMap. OpenMap is a free and open
source software written in Java programming language. This is the
main purpose why this GIS is chosen in this modelling exercise, first
it is free and open source, and second it is written in Java.

GIS software actually manipulates geographical digital data. What
makes a GIS software valuable is the data supplied to it. It is like a
satellite navigation on a car, it is useless without the map data.
Whatever type of data is supplied to a GIS, it shows that data to the
user. If, for example, you are interested in vehicle routing on roads,
then the road data, which is generally represented by vectors, must
be given to the software.

Three types of digital map data are mentioned here.

 Vector maps

 Elevation maps

 Raster maps

Draft v.0.2

Murat Gunal © 5

A vector map consist of vectors, or lines in a way, which their start
and end points are known. Think about shore lines or political
boundaries, or rivers, or roads in a town. You can draw these
shapes with lines, either straight or curved on a paper. Curved lines
are more difficult to represent on computer since they need more
parameters than a straight line needs. For a straight line, or say for
multiple straight and connected lines, you need to keep starting
point and ending point of each line. By a “point” we meant a point
on earth which means a pair of latitude and longitude. On a 2
dimensional computer screen it is easy to covert world coordinate
system (Lat, Lon pair) to screen coordinate system (X, Y pair).

There are different format of elevation data. Most common one is
the Digital Terrain Elevation Data (DTED). DTED simply keep grid
based elevation data, that is the earth is divided into squares and
for each square there is an elevation value. Then the problem is
what the dimensions of these squares are. This is a matter of
resolutions and in standards there are three levels of resolution; in
DTED level 0 (DTED0), a square is X by X, in DTED level 1 (DTED1) it
is X by X, and finally in DTED level 2 (DTED2) it is X by X. (ref.).

Raster maps are real maps which are scanned and converted to
digital format. It is convenient to see a real map on the screen but
in digital format it is not of much use, since the data is actually a
scanned image.

On these three types of map data you can also keep additional text
based information, such as the name of a location (a point on
earth), the length of a road (a vector).

As mentioned earlier a GIS software generally manipulates the data
supplied to it. It can handle different data at once. The data
generally displayed as “layers”, which you can turn on and off. For
example you can show a vector map together with DTED map. In
this note, a simulation model is also represented as a layer in
OpenMap. Therefore you can observe simulation with the map
data.

2.2 Simulation Software

There are many simulation software in the market and it is difficult
to compare them here. Most of these software, one way or
another, has capabilities for simulating naval operations. In a
simple way, for example if you want to model a moving vessel on
sea, the naval vessel is not much different than a truck on the road.
It must follow a route and interact with its environment.

Draft v.0.2

Murat Gunal © 6

You could model the system described here by using any other
COTS simulation software, such as Arena and MicroSaintSharp.
However Simkit is more powerful than the others since it has ready
made objects for combat simulations.

3 BUILDING A BASIC NAVAL MODEL

As discussed in the previous sections, we will first setup the GIS
tool and then write a simulation layer for our simulation model.
Later the model will be built.

3.1 OpenMap

Before writing any code in Java, you need to setup OpenMap. The
setup requires editing the OpenMap input file and the batch file for
running the application.

3.1.1 Input file (openmap.properties)

“openmap.properties” file is the input file for OpenMap GIS
package. This file is a text file which you can edit by using any text
editor, such as Windows’ Notepad. You can customize the user
interface of OpenMap by adding and deleting appropriate lines in
this file.

To add your SimulationLayer, you must add the following two lines
at the end of this file.

#-----------------------------

myLayer.class=NavalSim.SimulationLayer

myLayer.prettyName=My Simulation Layer

These two lines indicate where your layer’s class file is located, and
what label (My Simulation Layer) appears in the Layers menu on
the user interface. Note that in this input file, the sign “#” is the
comment character, in other words, the sentence beginning with
this sign is not read by the programme.

After indicating the location of your class file, you must then tell
OpenMap that you want to show this layer. To do this you need to
add “myLayer” word in the “openmap.layers” string, as shown
below.

openmap.layers=myLayer date SimExtra cities

shapePolitical

In this statement you also see other layers such as date, SimExtra,
cities. These layer are shown in the same order as its written here.
This is important since the mouse control is given to the top layer.

Draft v.0.2

Murat Gunal © 7

Note that as class and prettyName properties are written for
myLayer, each of these layers have also property lines in the input
file. A layer may also have extra properties that are entered in the
input file. MyLayer, or the Simulation Layer, has only these default
two properties. If you want to parameterize this layer in the future,
then you need to write “getProperties” method in you layer class.

OpenMap is a GIS software and it can only work with the GIS data,
such as vector maps, Digital Terrain Elevation Data (DTED) maps,
raster maps. These maps are actually files in your computers file
system and it is your task to tell OpenMap where these files are
located.

3.1.2 Running the application

Although a Java environment, such as Eclipse, is advised to be used
in this modelling exercise, it is worthy to explain how your Java
application can be run on a PC, without any programming
environment. To run a Java application, such as this Naval
Simulation model, Java Runtime Environment (JRE) must be
installed on the computer. JRE provides the runtime files needed.

To run the OpenMap user interface, the easiest way is to write a
batch file for DOS environment. A batch file is a text file which
includes DOS commands. A batch file to run the application is
shown below.

rem Java Virtual Machine

set JAVABIN=java.exe

rem NavalSim folder

set NavalSim_HOME=C:\MyJavaProjects\NavalSim

rem OpenMap folder

set OPENMAP_HOME=%DenizSim_HOME%\lib\openmap.jar

rem Classpath for Java

set CLASSPATH=%OPENMAP_HOME%;

%DenizSim_HOME%\inputs\;

%DenizSim_HOME%\bin\;

%DenizSim_HOME%\lib\;

%DenizSim_HOME%\lib\simkit.jar;

rem Run the application

%JAVABIN% -mx256m -Dopenmap.configDir=%DenizSim_HOME% -

Ddebug.showprogress com.bbn.openmap.app.OpenMap

“rem” in a batch file is like a comment character, which means that
a line starting with “rem” will not be taken into account and will
not be processed. The statement starting with “set” command is to

Draft v.0.2

Murat Gunal © 8

set the environmental variables, such the first set line tells the
operating system that JAVABIN variable’s value is java.exe. Likewise
you can set NavalSim_HOME and OPENMAP_HOME variables. In
these two variables you basically set where your executables, or
class files, are located.

Note that the libraries openmap.jar and simkit.jar are required by
the model, and therefore we explicitly must write where these files
are located. Additionally, we give some other folders, such as
\inputs\ and \bin\ to tell the application where our other files are
located (e.g. in the bin folder, there are class files of our NavalSim
application).

Finally, we call java.exe (%JAVABIN% line) and give the application
home as a parameter. This will eventually call the openmap
application’s main executive method.

3.1.3 Writing a Simulation Layer for OpenMap

After setting up the input file you can start writing a layer class for
OpenMap. The class definition and the imports are shown in Code
Box 3-1.

The Java imports are required Java libraries in this layer. The other
two parts, OpenMap and Simkit, are the other libraries that this
class use. Note that to import these two libraries, you need to map
library class files in your programming environment. A simple way
of doing this is to map openmap.jar and simkit.jar files. A jar file is
like a winzip file which effectively contains multiple .class files, or
compiled Java files, in a hierarchical way.

In Eclipse, to map the openmap.jar and simkit.jar files, you choose
the project properties and then Java Build Path and Libraries tab.

Draft v.0.2

Murat Gunal © 9

Code Box 3-1 Class definition of SimulationLayer for OpenMap

In the class definition part, you name the class (SimulationLayer) as
you name in the input file. Note that Java is case sensitive, this
means that SimulationLayer is different that simulationlayer. This
layer “extends” Layer class, in order words we use predefined
methods of a Layer, but we may re-write some of these methods if
needed. This layer also implements a number of interfaces. For
example, SimEventListener is used to implement the
“processSimEvent” method, which will be discussed later.

The constructor of this class is shown in Code Box 3-2. The “scn”
variable is the link between the model and the map layer. The rest
of the constructor is the code required for showing graphics on the
map. For example text1 and 2 are the letters A and B on the map,
circle1 and 2 are the circles around them.

package NavalSim;

/*

 * Java imports

 */

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.awt.event.MouseEvent;

import java.awt.geom.Point2D;

import javax.swing.JButton;

import javax.swing.JComponent;

import javax.swing.JPanel;

/*

 * OpenMap imports

 */

import com.bbn.openmap.Layer;

import com.bbn.openmap.event.LayerStatusEvent;

import com.bbn.openmap.event.MapMouseListener;

import com.bbn.openmap.event.ProjectionEvent;

import com.bbn.openmap.omGraphics.OMGraphicList;

import com.bbn.openmap.omGraphics.OMRaster;

import com.bbn.openmap.omGraphics.OMText;

import com.bbn.openmap.omGraphics.OMCircle;

import com.bbn.openmap.proj.Projection;

/*

 * Simkit imports

 */

import simkit.SimEvent;

import simkit.SimEventListener;

public class SimulationLayer extends Layer implements SimEventListener,

 MapMouseListener,

 ActionListener {

}

Draft v.0.2

Murat Gunal © 10

Code Box 3-2 SimulationLayer constructor.

On the map, locations of moving objects, the texts and circles, are
provided from the model. The line scn.getLocationMover returns
the location of the entity with the id number given as the
parameter. Once p1 and p2 is known, the rest is to update the
graphics accordingly; finally, the updated graphics are added to the
graphic list. The list is later projected and redrawn on the map.

The constructor’s role is to display the movers in their initial
locations.

The animation, or the change of movers’ locations occur in the
processSimEvent method (Code Box 3-3). When a simulation event
occurs this method is called. Type of the event is the variable e and
the getEventName method reveals the name of this event. For
example in the first if statement the ping event is handled. The ping
event is an easy way to animate entities in simkit. This will be
discussed later in this section. Likewise when a detection event
occurs, the number of detections will be incremented by one.

When the user changes the zoom level, or add/delete a layer on
the map, then the projectionChanged event is triggered. In this
case the code in Code Box 3-4 is executed. There are two things in
this method; first, the contents of the grafiklist, which contains the

public SimulationLayer(){

 scn=new TheModel();

 grafikList=new OMGraphicList();

 Point2D p1=scn.getLocationMover(0);

 Point2D p2=scn.getLocationMover(1);

 text1=new OMText((float)

 p1.getX(),(float)p1.getY(),"A",1);

 text2=new OMText((float)

 p2.getX(),(float)p2.getY(),"B",1);

 circle1=new OMCircle((float)

 p1.getX(),(float)p1.getY(),1,1);

 circle1.setLinePaint(Color.BLUE);

 circle2=new OMCircle((float) p2.getX(),(float)p2.getY(),

 scn.nmToDeg(1,30.0f));

 grafikList.add(text1);

 grafikList.add(text2);

 grafikList.add(circle1);

 grafikList.add(circle2);

}

Draft v.0.2

Murat Gunal © 11

mover icons and the letters A and B, are projected on the map.
Secondly, the graphics are repainted. When the repaint method is
called the paint method is executed, where the grafiklist contents
are rendered on the map.

Finally the last part of our simulation layer is the control panel of
the model. There could be a menu item or a panel for controlling
the simulation. However for showing how a layer panel can be
created, a getGUI method is written. In the Code Box 3-5, related
user interface can be created, This method actually controls the
simulation model. The pingThread2 class is the “ping” event creator
in the simulation. Its parameters are used to control the ping
events’ interval (the time between two ping events in the
simulation) and the animation ping intervals (screen update
frequency). The first is to add “ping” events in the event list, and
the second is the real time between ping events.

The following five lines are to create sim. event listener links.
Eventually, these lines say that this layer will listen to the
simulation events created by pt, movers, and sensors. Where will
these events be handled? In the processSimEvent function. There is
only one JButton object in this basic interface. When this button is
clicked we want to run the model. Therefore an actionlistener is
created and in this code we start the model and as well as pinging.

Draft v.0.2

Murat Gunal © 12

Code Box 3-3 ProcessSimEvent function.

public void processSimEvent(SimEvent e) {

 fireStatusUpdate(LayerStatusEvent.START_WORKING);

 if (e.getEventName().equals("Ping")) {

 OMText tempText1=(OMText)

 grafikList.getOMGraphicAt(0);

 OMText tempText2=(OMText)

 grafikList.getOMGraphicAt(1);

 OMCircle tempCirc1=(OMCircle)

 grafikList.getOMGraphicAt(2);

 OMCircle tempCirc2=(OMCircle)

 grafikList.getOMGraphicAt(3);

 tempText1.setLat((float)

 scn.getLocationMover(0).getX());

 tempText1.setLon((float)

 scn.getLocationMover(0).getY());

 tempCirc1.setLatLon(

 (float)scn.getLocationMover(0).getX(),

 (float)scn.getLocationMover(0).getY());

 tempText2.setLat(

 (float)scn.getLocationMover(1).getX());

 tempText2.setLon(

 (float)scn.getLocationMover(1).getY());

 tempCirc2.setLatLon(

 (float)scn.getLocationMover(1).getX(),

 (float)scn.getLocationMover(1).getY());

 tempText1.generate(proj);

 tempText2.generate(proj);

 tempCirc1.generate(proj);

 tempCirc2.generate(proj);

 }

 if (e.getEventName().equals("Detection")) {

 System.out.println("Detection at:"+

 getSimTime());

 detectionCounter++;

 }

 if(proj != null){

 ((OMGraphicList)grafikList).project(

 (Projection)proj, true);

 }

 repaint();

 fireStatusUpdate(LayerStatusEvent.FINISH_WORKING);

}

Draft v.0.2

Murat Gunal © 13

Code Box 3-4 projectionChanged and paint methods.

Code Box 3-5 GetGUI method.

There is also a one-line function to communicate with the model’s
simulation time. The getSimTime function gets the simulation time
via scn variable.

//A GUI for the layer

public java.awt.Component getGUI() {

 JPanel returnPanel = new JPanel();

 final PingThread2 pt = new PingThread2(0.1, 100, false);

 pt.addSimEventListener(this);

 scn.mover[0].addSimEventListener(this);

 scn.mover[1].addSimEventListener(this);

 scn.sensor[0].addSimEventListener(this);

 scn.sensor[1].addSimEventListener(this);

 runButton.addActionListener(new ActionListener()

 {

 public void actionPerformed(ActionEvent e)

 {

 scn.startTheModel();

 pt.startPinging();

 }

 });

 returnPanel.add(runButton);

 return returnPanel;

}

public void projectionChanged(ProjectionEvent e) {

 proj = e.getProjection();

 System.out.println("projection Changed");

 ((OMGraphicList)grafikList).project(

 e.getProjection(), true);

 repaint();

}

public void paint(java.awt.Graphics g) {

 if(grafikList.size() > 0){

 grafikList.render(g);

 }

 fireStatusUpdate(LayerStatusEvent.FINISH_WORKING);

}

Draft v.0.2

Murat Gunal © 14

3.2 Simkit

The simkit model is in the TheModel class and it includes a
constructor (Code Box 3-6) and a method (Code Box 3-7). Class
variables are arrays of movers, sensors, and a referee. These are to
keep our entities in the simulation model. Note that all of these
classes are Simkit classes which are included in the Simkit library.

Constructor of the model class starts with adding a sensor, a
mover, and a mediator class to the SensorTargetMediatorFactory.
This is to create a top level viewer to the model. This class will keep
an eye on the interactions between movers and sensors, e.g. the
time a mover enters a sensor’s detection range, the location when
a mover exits from a sensor’s range.

We need to know initial locations of our movers and sensors.
Points1 and 2 variables are OpenMap’s 2D arrays and they simple
keep a pair of double variables. Note that this may mean X and Y
coordinate of a point on the screen, as well as latitude and
longitude of a location in Cartesian coordinate system. In our case
it is the latter. The default starting locations are in the central
Mediterranean.

In our simulation model we have two movers. We initiate two
movers in the mover array. Our movers are of type
“UniformLinearMover”. This type of mover assumes that a mover
entity moves according to v=x/t equation, no acceleration, and no
curves, turn etc. Please refer to Buss and Sanchez (2005) for more
detail. The last parameter in the initialization is the speed of the
mover. The important point here is that the speed is in distance
travelled in unit time. The distances in our model are measured on
a map, it is not pixels on the screen, and therefore the distances
are converted to degrees on the map. In this class, a method to do
the calculation is given:

public float nmToDeg(int latOrLon, float distance)

In our fictional scenario, the searcher moves randomly. To create
this effect we initiate a random variate with two elements; to get a
uniformly distributed random variable between 33 and 36 (this the
latitude bounds of the area) and a uniformly distributed random
variable between 15 and 20 (and longitude bounds). The rv variable
is used in the random mover manager.

Draft v.0.2

Murat Gunal © 15

Code Box 3-6 The Model constructor.

 public Point2D.Double[] points1;

 public Point2D.Double[] points2;

 Mover[] mover;

 Sensor[] sensor;

 MoverManager[] manager;

 SensorTargetReferee ref;

public TheModel(){

 SensorTargetMediatorFactory.addMediator(

 CookieCutterSensor.class,

 UniformLinearMover.class,

 CookieCutterMediator.class

);

 points1 = new Point2D.Double[2];

 points2 = new Point2D.Double[2];

 points1[0] = new Point2D.Double(34.5, 15.0);

 points1[1] = new Point2D.Double(34.5, 20.0);

 points2[0] = new Point2D.Double(36.0, 17.5);

 points2[1] = new Point2D.Double(33.0, 16.0);

 mover = new Mover[] {

 new UniformLinearMover("Ship 1", points1[0], 0.1),

 new UniformLinearMover("Ship 2", points2[0], 0.2)

 };

 sensor = new Sensor[] {

 new CookieCutterSensor(nmToDeg(1,0.0f), mover[0]),

 new CookieCutterSensor(nmToDeg(1,30.0f), mover[1])

 };

 RandomVariate[] rv = new RandomVariate[] {

 RandomVariateFactory.getInstance("Uniform", new Object[] { new

 Double(33.0), new Double(36.0) }),

 RandomVariateFactory.getInstance("Uniform", new Object[] { new

 Double(15.0), new Double(20.0) })

 };

manager = new MoverManager[] {

 new PatrolMoverManager(mover[0], points1),

 new RandomLocationMoverManager(mover[1], rv)

 };

 for (int i = 0; i < manager.length; ++i) {

 manager[i].setStartOnReset(true);

 }

 ref = new SensorTargetReferee();

 for (int i = 0; i < mover.length; ++i) {

 ref.register(mover[i]);

 }

 for (int i = 0; i < sensor.length; ++i) {

 ref.register(sensor[i]);

 }

}

Draft v.0.2

Murat Gunal © 16

Mover Managers are to control the movements of the movers.
There are a number of mover managers already coded in Simkit,
such as Patrol Mover Manager and Random Location Mover
Manager. Since in this example we have one mover doing patrolling
and another one doing random moves, we initiate them
accordingly.

Finally, we can tell the movers that when the model is reset they
can start moving. We also need to say that movers and sensors are
registered with the referee.

getLocationMover and getSimTime methods are auxiliary methods.
The first one is required by the animation on the map. The map
objects (OMText and OMCircle) know the location of movers in the
simulation by calling this method. Likewise, the simulation time can
be asked at anytime by calling getSimTime.

Code Box 3-7 Other methods in theModel class.

startTheModel method is called externally. In this method we set
some parameters in the model, for example verbose mode, single
step mode, and when the model will stop. After these lines we can
start the movements by calling mover managers’ start method.

public void startTheModel() {

 //SimplePropertyDumper dumper = new SimplePropertyDumper();

 //ship1.addPropertyChangeListener(dumper);

 //ship2.addPropertyChangeListener(dumper);

 //Schedule.reset();

 Schedule.setVerbose(true);

 Schedule.setSingleStep(false);

 Schedule.stopAtTime(1000.0);

 for (int i = 0; i < manager.length; ++i) {

 manager[i].start();

 }

}

public Point2D getLocationMover(int i){

 return mover[i].getLocation();

}

public double getSimTime(){

 return Schedule.getSimTime();

}

Draft v.0.2

Murat Gunal © 17

There are two missing parts in this simple model; first the data
collection facility. In the Code Box 3-7 the commented lines are to
give an indication of how this can be done. Simkit also provides
data collection classes such as SimplePropertyDumper, with
property listeners, e.g. dumper listens property changes of ship1.
The second missing part is the multiple replications. As with other
simulation models which use random numbers, this model must
also run multiple times, however as it is now, it allows one model
replication. To do multiple replications, there must be a loop which
in each iteration the model resets and then runs with different
random number stream.

REFERENCES

Buss A.H. (2001) Basic Event Graph Modeling. Technical Notes,
Simulation News Europe, April 2001: 1-6.

Buss A.H. and P. Sanchez (2005) Simple Movement and Detection

in Discrete Event Simulation. Proceedings of the 2005 Winter
Simulation Conference, M. E. Kuhl, N. M. Steiger, F. B.
Armstrong, and J. A. Joines, eds. pp.992-1000.

Buss A.H., D.K.Ahner (2006) Dynamic Allocation Of Fires And

Sensors (Dafs):A Low-Resolution Simulation For Rapid
Modeling. Proceedings of the 2006 Winter Simulation
Conference. L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson,
D. M. Nicol, and R. M. Fujimoto, eds.

Mack, P. (2000) THORN: A Study in Designing a Usable Interface for

a Geo-Referenced Discrete Event Simulation. MSc Thesis,
Naval Postgraduate School. USA.

Yildirim U.Z., B.C. Tansel, I.Sabuncuoglu (2009) A multi-modal

discrete-event simulation model for military deployment,
Simulation Modelling. Practice and Theory, Volume 17, Issue
4, April 2009, Pages 597-611, ISSN 1569-190X, DOI:
10.1016/j.simpat.2008.09.016.

	Introduction
	OpenMap and Simkit
	The Model Scope

	Background Information
	Geographical Information Systems (GIS)
	Simulation Software

	Building a Basic Naval Model
	OpenMap
	Input file (openmap.properties)
	Running the application
	Writing a Simulation Layer for OpenMap

	Simkit

	References

