

Advanced Modeling Features
of Micro Saint Sharp

Murat M. Gunal

Draft v.0.2

June - 2010

Draft v.0.2

Murat Gunal © i

Contents

1 Introduction .. 1

2 Time Management ... 2

3 Data Structures ... 4

3.1 Hashtables ... 4

3.1.1 Creating a Hashtable .. 4

3.1.2 Adding an Item .. 5

3.1.3 Removing an Item .. 5

3.1.4 Accessing an Item ... 5

3.2 ArrayLists ... 6

3.2.1 Creating an ArrayList .. 6

3.2.2 Adding an Item .. 6

3.2.3 Removing an Item .. 6

3.2.4 Accessing an Item ... 6

4 Using Excel ... 7

4.1 Reading from Excel .. 8

4.2 Writing to Excel ... 8

5 Objects and the Designer ... 9

6 Data Collection ... 9

6.1 Histograms ... 9

7 Distributions .. 11

7.1 Hyper-exponential Distribution .. 11

7.2 Empirical Distribution ... 12
7.3 Sampling from Non-Stationary Distributions:

Thinning Algorithm .. 12

Draft v.0.2

Murat Gunal © 1

1 INTRODUCTION

Micro Saint Sharp’s motto is “Everything you need in simulation”.
This is very correct indeed, since Micro Saint Sharp really provides
everything you need to model a system.

To clarify the terminology, Micro Saint Sharp uses C# programming
language. This is quite a contemporary language which is an Object-
Oriented language. If you are familiar with C and Java, it would be
very easy to get used to this new language. The “#” sign is
pronounced as “sharp” and therefore I will use MS# to name Micro
Saint Sharp in this book.

In this book, I mainly write about the ways the modeller can benefit
from advance features of MS#. Real case studies are given to clarify
the subjects covered.

Some advanced data-related features covered in this book are;

 Hashtables

 ArrayLists

 Excel

 Object Designer

In the Time management section, a method to convert virtual time
units to meaningful units is given.

Data Collection – Snapshots (histograms)
Distributions (Hyperexponential)
Non-linked Tasks

TO BE WRITTEN

Draft v.0.2

Murat Gunal © 2

2 TIME MANAGEMENT

Time is a virtual entity in MS#. A unit of time is determined by the
modeller. Therefore it may be useful to convert the time to
meaningful time in the model. The time management in MS# is left
to the modeller and here in this section a method is presented. This
method utilizes Scenario Events in MS#.

Figure 2-1 A Scenario Event for time management.

It assumes that you already defined the variables hour, day, week,
and month as integers and their default values are 0. You also
define monthFinish and set its value to a positive integer which
represents number of months you want to simulate the model for.

Draft v.0.2

Murat Gunal © 3

As you know Scenario Events are the bunch of codes that the
model executes at given times, once or in regular intervals. In this
example we wanted the “Increment Hour” Scenario Event to run at
time 60, with regular intervals of 60, since an hour has 60 minutes
and this continues through time. Note that we assume, as we
discussed earlier, that the unit of time is minutes in this model.

What is amazing here is that, since you have full flexibility of C# you
can actually set some rules in this function. For example in line 7
you can check whether the hour variable has reached 24. This is to
check that the time is 24-hour circular and the hour variable only
takes values between 0 and 23 (inclusive). When this happens you
reset the value to 0, to represent the midnight. When the midnight
is reached, that is a day has elapsed, it is time to increment the day
variable (see line 9). In the same way, we need to make sure that
the day variable is circulating 7 days.

It is also easy to check whether a month has elapsed. By using a
simple mathematic operator “%” we can see if a week is divisible by
4. If the value of week is a multiple of 4 then it yields 0. We assume
that every month is exactly 4 weeks, and calendar months are not
used.

In the end of this example you see four lines of codes (lines 20-23).
This part is to demonstrate how you can use time related variables
to control the run length of your model. For example since this
Scenario Event is executed regularly, it is also checked if a pre-
defined time has come. If so, you can, for example, Halt the model.
Note that Model.PrintOutput function prints the string value to
MS#’s output window. This is a very useful function which can be
used anywhere in the model code.

Draft v.0.2

Murat Gunal © 4

3 DATA STRUCTURES

3.1 Hashtables

Hashtables are one of the most efficient data structure in C#
programming. They can also be used in MS#. In the variables you
can define a variable of type Hashtable.

Hashtables are dynamic arrays which means the user can add any
number of variables to it. There is no need to predefine its size. This
feature of hashtable is quite usefull since its alternative, the arrays,
you need to define its size.

A Hashtable is a dynamic array which can store key-value pairs.
They can be seen as a dictionary, for every word there is a string to
tell the meaning of the word. In C#, key and value is of type Object,
which the user can later cast these variables to any type needed.

3.1.1 Creating a Hashtable

Hashtables can be created using MS# user interface. In the
variables node of the tree view you can create a variable and then
choose its type as Hashtable.

Figure 3-1 Defining a Hashtable

When a variable of type hashtable is defined, as you can see in
Figure 3-1 its initial value is assigned to “new Hashtable()”. This
actually means “to instantiate a new instance of Hashtable class”.
The reader is advised to revise Object-Oriented programming
concepts.

Draft v.0.2

Murat Gunal © 5

There is another way of creating a hashtable. Inside the code, for
example in a Scenario event (ScenarioEvent1), you can explicitly
write the following;

Hashtable myTable=new Hashtable();

The variable “myTable” is a local variable and its scope is only the
Scenario Event. As you know, however, a variable which is defined
in the variables is a global variable and its scope is whole model.

3.1.2 Adding an Item

In the example, to keep a list of Entities in MS# a hashtable with
the name “myEntityList” is created. In this simple example after
creating an Entity (using an Entity generator) the entity is added to
myEntityList with the command shown below. Note that the key in
our hashtable is the Entity’s tag number. The value, on the other
hand, is the Entity itself.

myEntityList.Add(Entity.Tag,Entity);

By doing this, you keep a copy of every entity that is created in the
model. Why we did so is up to the user. It is important to note that
the unique identifier is Entity.Tag since we need unique key
numbers in the hashtable.

3.1.3 Removing an Item

To remove an item in a hashtable you simply call “Remove”
method. In the example model, Ending Effect of “Access an item
and dispose” you can write the following;

myEntityList.Remove(Entity.Tag);

The parameter is the key of the key-value pair. The code above will
remove every entity that is processed in the ending effect.

3.1.4 Accessing an Item

Hashtables are actually arrays and therefore to access an item in a
hashtable you simply use [] operators. In the example model,
Beginning Effect of “Access an item and dispose” task you can write
the following;

Entity anItem = (Entity) myEntityList[Entity.Tag];

Model.PrintOutput("The Entity's Tag Number:"+anItem.Tag);

Draft v.0.2

Murat Gunal © 6

In the first line, the hashtable “myEntityList” is accessed using
“*Entity.Tag+”. This index is the key in the hashtable. Since the key
in our example is the tag number, this code will fetch the values,
which are Entities and assign the entity to a temporary, local
variable “anItem”. “(Entity)” is used just before myEntityList. This
essentially tells the compiler that the returned type will be of
“Entity” class type. This operation is called “type casting”. You can
then use the returned value, or Entity, however you like, such as to
print its attributes.

3.2 ArrayLists

3.2.1 Creating an ArrayList

ArrayLists can also created using MS# user interface.
…

3.2.2 Adding an Item

You can add an item to an arrayList object just like you do in
Hashtables. However since an arrayList can only record one value
to, in the Add function there is only one parameter which is
“value”.

…..

3.2.3 Removing an Item

To remove an item in an arrayList,
….

3.2.4 Accessing an Item

To access an item in an array list you simple use …
…

Example: Accessing an Item in a MS# Queue

It is difficult to access an item in a queue in MS#. One way of
accessing an individual item is to use built-in function
“Model.Find”. This functions returns a list of Entities in a given task.
For example;

ArrayList theList=Model.Find(“ID”,”3”);

Draft v.0.2

Murat Gunal © 7

will return a list of entities which the task ID is 3. Note that the type
ArrayList is a C# type which is similar to HashTables, but in
ArrayLists there is only a list of items not key-value pairs. An item in
an ArrayList can be directly accessed using [] and the index
number. Therefore to access the first Entity in Task 3, and the
Entity’s attribute, you can write the following ;

((Entity) theList[0]).anEntityAttribute

You can then use this statement anywhere you like e.g. to check for
a condition.

4 USING EXCEL

Microsoft Excel is one of the most frequently used spreadsheet
applications in organisations. MS# can read and write to Excel
files…

The model “ReadingWritingExcelFiles.saint” is an example of how
to read data from Excel and how to write to. …
This model does nothing but reading data from the file,
“ForMicroSaint-ReadWrite.xls”, and writing some data to it. Task
network has nothing. However you will see that two functions,
readExcel() and writeExcel(), are called in the “Initialization Code”.
When the model start, these two functions are immediately called
and executed.

From “Tree View” right click “Communications” and select “Add
Excel” (see Figure 4-1). This will add item named “Excel_0”. You can
change this name by double clicking on it. In our example, we
named the file “MyExcelFile”. If you want to save changes when
you write data in this file, you need to tick “Save on Model
Complete”.

Figure 4-1 Defining a Excel file

Draft v.0.2

Murat Gunal © 8

You need to choose an Excel file to read from and/or to write to.
This must be done once you copy your model file to another
computer, if the path to the Excel file is different.

4.1 Reading from Excel

The readExcel function, shown below, reads data from the Excel file
and writes its content to arrivalRates array and then prints what is
read to output screen. When you run the model you will see that
the content of b4:b8 cells will be displayed in the output screen.

Figure 4-2 "readExcel" function.

The statement in line 1 establishes a link with the Excel file’s
“SheetToRead” worksheet. To read data from this worksheet, you
need to call GetCell function (line 4). This function returns an
Object array. The type Object is a kind of generic type which can
later be converted to any time appropriate. This conversion is done
in a for loop (line 7-9) by using the function Convert.To…. Since we
know that the data is integer, we converted them to Int32.
arrivalRates is an array of integers which we defined in MS#. You
can then use the values in arrivalRates array in the model, for
example we printed them in the output screen in lines 12-15.

4.2 Writing to Excel

Writing data to an Excel file is also possible in MS#. First, you need
to define a communication link with the Excel file that is to be
written. You must follow the same steps as you did for reading
from Excel. You can define a different link or use the same link to

Draft v.0.2

Murat Gunal © 9

read and write.

In our example model, the function writeExcel writes some data to
a worksheet. This function is shown in Figure 4-3. In the first line, as
we did in readExcel function, we establish a link with the Excel file’s
worksheet. In the Excel file the data is written to “SheetToWrite”
worksheet.

To write a data to this worksheet you need to call “SetSheet”
method. This has two parameters, first the address the data will be
written to, and second, the data to be written. In our example,
multiples of 100 is written to B column’s rows 1 to 10.

Figure 4-3 "writeExcel" function.

5 OBJECTS AND THE DESIGNER

You can define your own classes in MS# using “Object Designer”.
This feature is particularly useful when there are multiple types of
classes in the system you are modelling. For example, patients,
doctors, nurses can be different classes of objects.
To be written.

6 DATA COLLECTION

Snapshots are easy ways of collection data in MS#. However you
may need to write some code in order to format the output data.

6.1 Histograms

Histograms are useful to understand the distribution of a data set.
By drawing a histogram you actually count the number of data
points which falls into a specified interval.

Draft v.0.2

Murat Gunal © 10

To draw a histogram in MS#;

 Define a variable “waitingTimesBin” of integer array of size 53.

 Define a variable “endWarmup” of Boolean. Make its default
value true.

 Define a snapshot “Histogram” which will collect data at the
end of run. In this snapshot “waitingTimesBin” data will be
collected. Since its an array you need to add each element of
this array one by one. An easy way to do this is to use Excel and
import the string from it. A sample worksheet is given.

o In this Excel file, in “Template” worksheet, use the
formula to concatenate the variable name and the index
number.

o Copy the contents of B column and paste it to a text
editor (e.g.Windows Notebook). Then copy the text and
paste it to “Expressions” column in Snapshots
worksheet.

o In MS#, read the “Snapshots” worksheet from “Utilities
| Import Data from Spreadsheet”.

 Call the function waitingTimeHistogram with the value the
histogram to be drawn.

Function waitingTimeHistogram() returns void and its parameter is
waitingTime of type FloatingPoint.

Code Box 6-1 waitingTimeHistogram function

At the end of the run, you can export results of “Histogram” and
open the html file using Excel. Then, in Excel, you can draw a simple
bar chart, such as below. Note that this is the result of one
simulation run. If you run the model multiple times, the result of
each run will be displayed as one row in the Excel file.

double binSize=3.0;

if (endWarmup) {

 for (int i=0; i<52; i++){

 if ((waitingTime>=(i*binSize))&&(waitingTime<((i+1)*binSize))){

 waitingTimesBin[i]++;

 }

 }

 if (waitingTime>=(52*binSize)) {

 waitingTimesBin[52]++;

 }

}

Draft v.0.2

Murat Gunal © 11

Figure 6-1 A Histogram (intentionally not formatted).

0
10
20
30
40
50
60
70
80
90

100

w
ai

ti
n

gT
im

e
sB

in
[0

]

w
ai

ti
n

gT
im

e
sB

in
[3

]

w
ai

ti
n

gT
im

e
sB

in
[6

]

w
ai

ti
n

gT
im

e
sB

in
[9

]

w
ai

ti
n

gT
im

e
sB

in
[1

2
]

w
ai

ti
n

gT
im

e
sB

in
[1

5
]

w
ai

ti
n

gT
im

e
sB

in
[1

8
]

w
ai

ti
n

gT
im

e
sB

in
[2

1
]

w
ai

ti
n

gT
im

e
sB

in
[2

4
]

w
ai

ti
n

gT
im

e
sB

in
[2

7
]

w
ai

ti
n

gT
im

e
sB

in
[3

0
]

w
ai

ti
n

gT
im

e
sB

in
[3

3
]

w
ai

ti
n

gT
im

e
sB

in
[3

6
]

w
ai

ti
n

gT
im

e
sB

in
[3

9
]

w
ai

ti
n

gT
im

e
sB

in
[4

2
]

w
ai

ti
n

gT
im

e
sB

in
[4

5
]

w
ai

ti
n

gT
im

e
sB

in
[4

8
]

w
ai

ti
n

gT
im

e
sB

in
[5

1
]

Series1

7 DISTRIBUTIONS

MS# provides built in functions to sample from common statistical
distributions. However you may need to write code to sample from
some special distributions.

7.1 Hyper-exponential Distribution

This distribution is a version of exponential distribution. It is useful
to model long tail distributions and is actually n-phase distribution.

Function Hyperexponential() returns a floatingPoint and its
parameters are mu1, mu2, and alpha of type FloatingPoint. In this
example the distribution is a two-phase hyper-exponential

Code Box 7-1 Hyperexponential function.

double U1=Model.Random();//Random number for phase selection

double returnValue=0.0;

if (U1<=alpha)

 returnValue=Distributions.Exponential(mu1);

else

 returnValue=Distributions.Exponential(mu2);

return returnValue;

Draft v.0.2

Murat Gunal © 12

7.2 Empirical Distribution

Some data is difficult to fit to stationary distributions. In these
cases, modellers may prefer to use empirical distributions. This is
an easy option because frequencies in the data are used to sample.

To Be Written

7.3 Sampling from Non-Stationary Distributions: Thinning Algorithm

In real life most time dependent distributions are non-stationary,
or in other words the parameters of distributions change in time.
For example, let’s think about number of patient arrivals in an
Emergency Department. More patients arrive in day time than in
night time.

To Be Written

	Introduction
	Time Management
	Data Structures
	Hashtables
	Creating a Hashtable
	Adding an Item
	Removing an Item
	Accessing an Item

	ArrayLists
	Creating an ArrayList
	Adding an Item
	Removing an Item
	Accessing an Item

	Using Excel
	Reading from Excel
	Writing to Excel

	Objects and the Designer
	Data Collection
	Histograms

	Distributions
	Hyper-exponential Distribution
	Empirical Distribution
	Sampling from Non-Stationary Distributions: Thinning Algorithm

